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Abstract. We discuss the hydrodynamic equations which describe the shear dynamics of a liquid composed
of anisotropic molecules, both in its normal and its supercooled phases. We use these equations to analyze
90◦ depolarized light scattering experiments performed in the supercooled phase of a glass forming liquid,
metatoluidine, and show that the information extracted from this analysis is consistent with independent
shear viscosity measurements performed on that liquid in the same temperature range.

PACS. 66.20.+d Viscosity of liquids; diffusive momentum transport – 78.35.+c Brillouin and Rayleigh
scattering; other light scattering – 64.70.Pf Glass transitions

1 Introduction

The interpretation of the low-frequency part of the light
scattering spectra of liquids is a very old problem. As
early as 1910, it was proposed that the thermal density
fluctuations of the liquid were the source of the polarized
light scattering spectrum. Indeed, when the hydrodynamic
equations of the fluid are solved in q-space, one finds that
three out of its five roots correspond to longitudinal exci-
tations, which can couple to the density fluctuations. Two
of them are the propagating longitudinal phonons with
wave vector q that give rise to the well-known Brillouin
peaks seen as narrow lines at frequencies of the order of 10
GHz for visible light and not too small scattering angles.
The third root corresponds to temperature fluctuations
which are damped by heat conduction. The heat diffusion
process gives rise to a Lorentzian spectrum centered at
ω = 0, with linewidth of the order of 0.1 GHz when ob-
served in the same conditions as above. This is called the
Rayleigh peak. Mountain [1] was the first to notice that
those equations did not take into account the phenomenon
of viscoelasticity first introduced by Maxwell, in the case
of the shear viscosity, one hundred years earlier [2]. When
such a mechanism is introduced on top of a relaxation-
less bulk viscosity, the relaxation process associated with
the longitudinal viscoelasticity shows up as an additional
contribution which increases the width of the Brillouin
peaks. It also gives rise to an additional central peak, the
width of which does not depend on the wavevector but
may vary strongly with temperature. The effect is mostly
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visible when this width is smaller than but of the order of
the Brillouin frequency. In this rather frequent case, the
“Mountain” mode increases the magnitude of the scat-
tered intensity between the Rayleigh and the Brillouin
peaks, and can completely mask the Rayleigh contribu-
tion.

Actually, the hydrodynamic equations have two more
solutions, not yet mentioned because they do not couple to
the density fluctuations: these are the transverse modes,
the behaviour of which, in viscoelastic conditions, is the
subject of the present paper. The situation may seem sim-
ple for atomic liquids or molecular liquids formed of spher-
ical top molecules: at low viscosity, a shear deformation,
which involves the shear viscosity coefficient, ηs, does not
propagate, while the molecular rotations which could be
associated with this deformation have no effect on the po-
larizability tensors of the corresponding molecules which
are proportional to the unit tensor. A naive analysis of this
situation leads to the conclusion that the transverse solu-
tions of the hydrodynamic equations are diffusive modes,
characterized by a Lorentzian spectrum centered at ω = 0,
with a linewidth proportional to ηs but that such modes
cannot couple to light; indeed, in such situations, they
have never been detected by light scattering techniques;
yet, their coupling to light needs to be discussed more
carefully and we shall briefly come back to this point at
the end of the present section.

The situation is different and much more intricate
in fluids formed of anisotropic molecules, because this
anisotropy has to be taken into account in two different
ways. One aspect is the opening of a new light scattering
channel: the rotation of an anisotropic molecule induces
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a fluctuation of the molecular polarizability tensor in the
laboratory axes, and this channel is, in practice, the sole
origin of the depolarized light scattering spectrum in this
frequency range. The second aspect is the orientational
dynamics of the molecules, which has to be included in
the equations of motion of the fluid. This introduces one
additional equation to the set of hydrodynamic equations
and the coupling between this orientational motion and
the hydrodynamic modes has to be properly taken into
account.

In the backscattering geometry, the rotational dynam-
ics and the hydrodynamic modes decouple (see Sect. 2):
the rotational dynamics appears as an intense central
mode with a linewidth of the order of 100 GHz for low vis-
cosity liquids. The spectrum related to the Rayleigh mode
is much narrower and falls below the resolving power of
the instrumental technique used here. This explains why
we shall neglect the thermal diffusion equation which leads
to such a mode in the rest of the present paper, consider-
ing the whole process as adiabatic: we shall focus here on
writing down the equations involving this rotational dy-
namics, on the influence of the coupling between the shear
and the rotational motions on the corresponding spectra,
and on the comparison between the present approach and
experiments. Before doing that, let us review briefly the
development of the subject over the past thirty years.

The first experiments [3,4] performed on liquids with
typical shear viscosities of the order of 1 cp in a non-
backscattering geometry revealed a depolarized spectrum
with a minimum at ω = 0, the so-called Rytov dip [5],
located between two symmetric maxima in the vicinity of
1–2 GHz. At first, it was thought that this spectrum was
the superposition of the rotational spectrum described
above and of transverse propagative modes originating
from the Maxwell viscoelastic effect. Shortly after, Keyes
and Kivelson [6] and Andersen and Pecora [7] pointed out
the necessity of taking into account the orientational dy-
namics of the molecules and their coupling with the shear
motion. In both cases, as well as in all the following publi-
cations taking orientational dynamics into account, the so-
lution was based upon a semi-phenomenological approach
to the problem: writing down equations describing this
rotation translation coupling, they showed that the inter-
pretation given in [3,4] was incorrect: through a negative
interference effect, the narrow diffuse shear mode, with a
linewidth proportional to the static shear viscosity, was
subtracted from the broad reorientational spectrum: vis-
coelasticity did not play any role in the explanation of
these low viscosity experiments.

New developments took place when the same theory
was applied to supercooled liquids in which the viscosity
was typically larger by two or more orders of magnitude
than in the preceding case. The Andersen Pecora theory
predicted that a first increase of the viscosity would re-
sult in the disappearance of the Rytov dip. But, for still
higher viscosities, provided that some cancellation effects
would take place, damped propagating shear waves could
appear. Indeed, such a phenomena was reported first by
Bezot et al. [8], then by Enright et al. [9]: the Rytov

dip disappeared for shear viscosities ηs of the order of
10 cp while transverse modes appeared for ηs one order
of magnitude larger. Yet, in the latter case, the shape of
the spectra could not be fitted with these theories using
the known values of ηs. Several explanations were then
proposed (see, e.g. [10–14]), each one introducing some
additional internal mode, i.e. adding at least one more
equation containing a linear coupling between this new
variable, or its time derivative, and the variables already
introduced in [6] or [7]. These models will be briefly re-
viewed in Section 5 but we must stress here that their
fundamental and common characteristic was that, as in
the original models [6,7], they assumed, at least formally,
that the rotation-translation coupling was instrumental
in producing the propagation of transverse modes at low
temperature, ignoring the fact that, even in a simple fluid,
transverse modes do propagate for high enough frequen-
cies.

Ailawadi et al. [14] and, later, Wang [15] suggested
combining viscoelastic effects and orientational dynam-
ics in the description of the propagation of transverse
modes in viscous liquids. In particular, Wang proposed to
write down hydrodynamic equations, complemented by an
equation of motion for the orientational dynamics of the
molecules, in which retardation (memory) effects would
systematically be taken into account. A natural conse-
quence of the use of such equations was the appearance of
propagating transverse waves at temperatures low enough
for the relaxation times to be longer that the inverse of
the frequency of such a mode. Wang was thus able to give
a semiquantitative description of the low frequency depo-
larized light scattering spectra detected, e.g. in salol [16]
or in orthoterphenyl [17]. Unfortunately, in [15] as well
as in later versions of that theory (see, e.g. [18,19]), the
way retardation effects were introduced was inconsistent,
in some places, with his phenomenological approach (see
Sect. 5.3).

The purpose of the present paper is to propose a coher-
ent phenomenological way of writing down coupled equa-
tions which take into account the shear and rotational
motions, include retardation effects in a natural way and
to show that these equations correctly describe the differ-
ent physical situations met in these molecular liquids. Af-
ter analyzing the formal basis of these equations, we shall
show that their low and high frequency limits represent,
without further assumptions, either diffusive shear modes
or propagative transverse modes coupled to orientational
motions of the molecules. Furthermore, the retardation
effects will be introduced in such a way that both the
rotational dynamics of the molecules and the viscoelastic-
ity related to the motion of the centers of mass may be
properly identified and described. This last aspect may
be tested because our formulation allows us to compare
values of ηs determined from viscosity measurements with
values obtained from the analysis of the Brillouin spec-
tra of propagative transverse acoustic modes and we have
proceeded to such a test. The different aspects of our work
are presented in the following way.
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Section 2 is devoted to writing down the equations of
motion of the dynamical variables within a phenomenolog-
ical approach. We shall study their solutions in the case
of transverse motions and shall show from general consid-
erations that they have the correct limits in the high and
low temperature cases. We shall also show the relationship
between some of the parameters extracted from fits of the
low-temperature spectra and the static shear viscosity.

In Sections 3 and 4, we shall apply the preceding for-
malism to the study of a fragile glass forming liquid, meta-
toluidine (CH3-C6H4-NH2), an organic compound with
melting temperature Tm = 243.5 K and a calorimet-
ric glass transition temperature Tg = 187 K [20]. More
information on this liquid and on the depolarized light
scattering experiments will be given in Section 3. The
0.75 GHz–8 GHz part of these spectra have been fitted to
the expressions obtained in Section 2, and a short report
on this analysis has already appeared in [21]. Section 4 will
give a detailed discussion of those results: we shall report
the values of the parameters so obtained in a temperature
range from 248 K, a temperature above Tm, to T = 208 K.
We shall also compare the value of ηs deduced from those
fits to the static viscosity, independently measured, and
show that good agreement is obtained over a large range
of viscosity values.

Finally, in Section 5, we shall briefly review the pre-
vious phenomenological approaches, some of which have
been already mentioned in this introduction. We shall
show that, once their structure has been transformed into
a two variable approach including retardation effects sim-
ilar to the one used in the present paper, it appears that
the corresponding equations always imply some incorrect
relationship with a physical aspect of the problem. A brief
conclusion will summarize our results and propose further
developments.

Before closing this introduction, let us note that mech-
anisms not requiring the existence of anisotropic molecules
for the detection of the diffusive and/or of the propagative
shear modes, have also been proposed. In particular, one
of them [22], based on the Dipole-Induced Dipole mecha-
nism should be active even in a monoatomic fluid. Another
one [14b] implies only the existence of molecular entities
and could be operative with spherical top molecules. It
turns out that, in such liquids, the back-scattering depo-
larized spectra have a very weak intensity. For instance, at
room temperature, in the GHz region, the depolarized in-
tensity of CCl4 (in which the two effects proposed in [14b]
and [22] should permit the detection of the Rytov dip) is
two orders of magnitude smaller than in a typical glass
forming liquid, salol (see e.g. Fig. 4 of [23]). Since in these
approaches as well as in all the other ones, the intensity
of the Rytov dip or of the propagative modes have the
same origin as the depolarized back scattering spectrum,
we can neglect the two mechanisms mentioned at the be-
ginning of this paragraph and assume, for the rest of this
paper, that the sole origin of light scattering in molecular
liquids formed of anisotropic molecules is the molecular
reorientational motion.

2 The basic equations and their discussion

This section is devoted to (i) the setting up of a theoretical
framework appropriate to the study of the low frequency
depolarized light scattering spectra of supercooled molec-
ular liquids and (ii) the discussion of the internal consis-
tency of the formulas we obtain. This requires a careful
analysis of the origin of each term we introduce in these
equations, of their consequence for the possible expression
of the corresponding retarded interactions and, finally, of
the low and high frequency limits of our results. We shall
take as a starting point the non-viscoelastic equations of
Quentrec [11] who seems to be the first author who formu-
lated the problem in terms amenable to the generalizations
we look for. Section 2.2 will describe how these equations
should be modified when retarded interactions have to be
taken into account. The expression for the correspond-
ing depolarized spectra will be derived in Section 2.3.
The contribution of the rotational dynamics to these spec-
tra is studied in Section 2.4. Finally, we shall examine in
Section 2.5 the low and high frequency limits of the con-
tribution of the shear viscosity to the spectrum and show
that both agree, without further assumption, with the
usual expression for those limits.

2.1 Hydrodynamic equations

Let us consider the set of hydrodynamic equations cor-
responding to our problem. The first two equations, de-
scribing mass conservation and momentum conservation,
are written as usual:

ρ̇(r, t) + div J(r, t) = 0, (2.1)

J̇i(r, t) + divjΠij(r, t) = 0, (2.2)

where ρ(r, t) is the mass density and J(r, t) is the mass
current (or momentum) density, Πij(r, t) is the momen-
tum current density tensor, i, j being Cartesian coordi-
nates.

Difficulties arise when one wants to make precise the
expression of Πij(r, t) in the case of a fluid composed of
anisotropic molecules and to write down the equations
of motion describing the orientational dynamics of the
molecules when retardation effects are taken into account.
Let us discuss these different points in turn.

Both Keyes and Kivelson [6] and Andersen and
Pecora [7] used, for the additional variable which has to
enter into the stress tensor associated with Πij (σij =
−Πij) a symmetrical 2nd rank tensor which was assumed
to describe a polarizability density (or, more accurately,
the traceless part of the fluctuation of such a quantity).
In order to write down the corresponding equations of
motion, they made use of the Zwanzig-Mori formalism,
introducing the symmetry properties of the correlation
functions of this variable and of the momentum density
rather than writing the explicit form of σij(r, t). Follow-
ing some preliminary attempts by Ailawadi et al. [14],
Quentrec [11] made use of this second route and simul-
taneously proposed a definite form for the polarizability
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density tensor or for any other tensor linearly related to
it. Choosing for the tensorial quantity a local mean value
of the molecular tensor of inertia1, he showed that one
should write:

¯̄σ = (−δP + ηb div v) ¯̄I + ηs ¯̄τ − µ
˙̄̄
Q, (2.3)

where δP is the fluctuation of the hydrostatic pressure and
¯̄I the unit tensor. ηb and ηs are the bulk and shear viscosi-
ties respectively, Qij the local fluctuation of the traceless
part of the tensor of inertia and µ a coupling constant. τij
is the traceless part of the strain rate tensor given by:

τij =
∂vi

∂xj
+
∂vj

∂xi
−

2

3
div vδij . (2.4)

Finally, on a phenomenological basis, Quentrec wrote the
following equation of motion for ¯̄Q:

− ¯̄Q− Γ−1 ˙̄̄
Q+ Λµ¯̄τ = 0, (2.5a)

where Γ has the dimension of a frequency (or relaxation
rate) which characterizes the linewidth of the spectrum
associated with the pure orientational dynamics of the
molecule and where Λ is a positive constant with the di-
mension of mass divided by velocity.

2.2 Discussion of the Quentrec hydrodynamic
equations and introduction of memory functions

Equations (2.3) to (2.5a) clearly have the form expected
for hydrodynamic equations. Indeed, in equation (2.3), ηb

is the bulk viscosity, which complement the bulk modulus,
Kb, while ηs replaces, for the liquid state, the shear modu-
lus, Gs, of the theory of elasticity, the displacement field u
being simultaneously replaced by its time derivative, the
velocity field v. Similarly, the last term of equation (2.3)

represents the effect of ¯̄Q, the additional variable of the
problem, on the stress tensor ¯̄σ: in the same way as the
time derivative of a shear strain contributes to ¯̄σ through
the shear viscosity ηs, the change in time of ¯̄Q produces
an additional contribution to the stress tensor with a cou-
pling constant, µ. This constant µ is the signature of a
rotation-translation coupling in the liquid and this cou-
pling is at the origin of both the flow birefringence effect
(a consequence of Eq. (2.5) and of Eq. (2.14) mentioned

below) and of the
˙̄̄
Q contribution to equation (2.3). The

relative signs which appear in front of µ in the two equa-
tions (2.3, 2.5a) can be shown to be a direct consequence
of this physical model.

Equation (2.5a) needs some further comments. It is
the result of a simplification valid both in the theory of
elasticity and in the equations of hydrodynamics when
one considers the coupling of orientational motions with
acoustic modes, i.e. when one is interested only in the low

1 Making use of an averaging technique borrowed from the
theory of electromagnetism where one defines a polarisation
density from the individual dipole existing on each molecule.

frequency regime. Actually, the general equation of motion
of ¯̄Q should read:

¨̄̄
Q = −ω2

0
¯̄Q− Γ ′

˙̄̄
Q+ Λ′µ¯̄τ . (2.5b)

Equation (2.5b) makes it clear that we are looking here at

an orientational motion characterized by ¯̄Q and that three
forces act on this variable. The first one is an ordinary
restoring force, which would lead to undamped librations
of the molecules if one would neglect the two last terms
of this equation. The libration frequencies are in the THz
region. The two remaining terms correspond to the two

origins of the damping: the
˙̄̄
Q term is the ordinary damp-

ing of the librations while the last term is the result of the
rotation-translation coupling, the corresponding internal
friction in the fluid creating a second damping mechanism
for the orientation fluctuations.

When one performs a time Fourier transform of
equation (2.5b), its l.h.s. yields a term in ω2. Since we are
interested only in frequencies below the THz range, this
term is negligible with respect to the term in ω2

0 which
appears in its r.h.s. and with respect to the other terms
of this r.h.s.. Equation (2.5a) is thus a simple rewriting of
equation (2.5b) obtained by putting its l.h.s. to zero, and
defining:

Γ−1 =
Γ ′

ω2
0

; Λ =
Λ′

ω2
0

, (2.6a)

a harmless simplification in the present case.
The second step consists in generalizing equations (2.3)

and (2.5b) in order to take into account retardation effects.
For a consistent treatment, retardation must be included
in all the friction terms appearing in those two equations:
it is not sufficient to introduce these effects only through
the Laplace transforms of the generalized viscosities ηs

and ηb; retardation effects have also to be taken into ac-
count in the rotation-translation coupling term which ap-
pears in these two equations, and in the pure orientational
damping term. Our phenomenological method for deriv-
ing these hydrodynamic equations precludes any attempt
at a self-consistent description of these retarded interac-
tions. Therefore, we shall make use of a phenomenological
description of the memory functions, a method which has
already been frequently used in such cases (see, for exam-
ple, [24–27]); the validity of such a description can only
be checked a posteriori, by looking at the consistency of
the parameters so obtained. Introducing those retarded
interactions, equations (2.3, 2.5b) become:

¯̄σ = (−δP + ηb ⊗ div v) ¯̄I + ηs ⊗ ¯̄τ − µ⊗ ˙̄̄
Q, (2.7)

¨̄̄
Q = −ω2

0
¯̄Q− Γ ′ ⊗

˙̄̄
Q+ Λ′µ⊗ ¯̄τ , (2.8a)

where ⊗ means a convolution product. In the spirit of the
Onsager theory, we consider that the same µ(t) acts in
equations (2.7, 2.8a).
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From a formal point of view, we note that there are
two differences between Wang’s original work [15] and the
present hydrodynamic equations. One is in the writing of
the two first terms of the r.h.s. of equation (2.8a). Indeed,
in the corresponding equation of [15], the memory func-
tion acts on the direct force (i.e. on a term proportional

to ¯̄Q) and not on the friction force (term proportional to
˙̄̄
Q); we have indicated above why it is consistent with the
present approach to use the expression adopted here. The
second difference is in the necessary appearance of a non-
zero l.h.s. in this equation, contrary to the case with no
retardation (Eq. (2.5b)) for which we have argued that the
¨̄̄
Q term could be neglected without difficulties. We shall
come back to those two aspects in Section 2.4 and in Sec-
tion 5.

2.3 Spectral shape of the depolarized light scattering
spectrum

Equations (2.1, 2.2, 2.7, 2.8) can be easily solved us-
ing space-time Laplace techniques, briefly recalled in Ap-
pendix A.1, which consist in multiplying each equation by
iei(q·r−ωt) and integrating over the entire space and over
t > 0.

Because of the vectorial character of J, those equations
have to be projected along three directions related to q:
we choose them to be u‖, which is the unit vector along
q, u⊥ and u′⊥, which are two orthogonal unit vectors,
both perpendicular to u‖. We focus here on the Laplace
transform of the thermal mean values 〈Q⊥⊥′(t)Q⊥⊥′(0)〉
and 〈Q⊥‖(t)Q⊥‖(0)〉.

Due to the particular definition of the Laplace trans-
form used here (which differs from the form used in [28]
by an opposite sign in front of ω):

f(ω) ≡ LT f(t) = i

∫ ∞
0

f(t)e−iωtdt, (2.9)

one obtains2 (see Appendix A.1):

Q2
⊥⊥′(ω) ≡ LT 〈Q⊥⊥′(t)Q⊥⊥′(0)〉 =

1

ω
R(ω)〈

∣∣Q0
⊥⊥′
∣∣2〉

(2.10)

with:

R(ω) =
ωΓ̂ (ω)

ω2
0 + ω Γ̂ (ω)

, (2.11a)

Γ̂ (ω) = Γ ′(ω)− ω, (2.11b)

〈
∣∣Q0
⊥⊥′
∣∣2〉 being the thermal mean square value of the in-

stantaneous fluctuations.
Similarly:

Q2
⊥‖(ω) =

1

ω
(R(ω) +R1(ω))〈|Q0

⊥‖|
2〉 (2.12)

2 The q-dependence of any quantity is written explicitly only
when the algebra depends on the modulus of q.

with:

R1(ω) =
q2ρ−1

m G(ω)

ω2 − q2ρ−1
m [ωηs(ω)−G(ω)(1−R(ω))−1]

,

(2.13a)

and:

G(ω) = Λ′ ω2
0

(
µ(ω)

Γ̂ (ω)

)2

R2(ω). (2.13b)

Let us consider a scattering geometry in which the scat-
tering plane is the [u‖,u⊥′ ] plane and the scattering angle
is θ. In the introduction, we already mentioned that the
only source of depolarized light scattering which is rele-
vant at low frequency in molecular liquids is the traceless

part, ¯̄β, of the molecular polarizability tensor. We argue
in Appendix A.2 that, in the frequency domain of interest
here, it is consistent with our hydrodynamic approach to
write:

¯̄β = b ¯̄Q. (2.14)

Within this approximation, in the usual VH geometry
where the incident light is polarized along u⊥ and the
scattered electric field is in the [u‖,u⊥′ ] plane, the scat-
tered intensity at frequency ω is proportional to:

I(ω) ≈ I0b2Im

(
sin2 θ

2
Q2
⊥⊥′(ω) + cos2 θ

2
Q2
⊥‖(ω)

)
,

(2.15)

where I0 is the incoming light beam intensity. Taking into

account that 〈
∣∣Q0
⊥⊥′

∣∣2〉 = 〈|Q0
⊥‖|

2〉, this yields:

I(ω) ≈ I0 b
2

ω
Im(R(ω) + cos2 θ/2R1(ω)), (2.16)

where R(ω) does not depend on q and represents the un-
coupled orientation fluctuation dynamics while R1(ω) de-
pends specifically on q.

2.4 The orientational part

The pure orientational spectrum is detected directly in
the depolarized backscattering geometry (θ = π) and is
proportional to:

I(ω) ≈
1

ω
ImR(ω) = Im

Q2
⊥⊥′(ω)

〈|Q0
⊥⊥′ |

2
〉
· (2.17)

R(ω) is thus an observable quantity which can be deter-
mined experimentally and analyzed (see Sect. 3). In prin-
ciple, equation (2.17) implies that the integral of its r.h.s.
over ω is equal to π, independent of the value of ω0 and of
the exact form of Γ ′(ω). Yet, the fulfilment of this relation
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requires two conditions:

– First, as the spectrum related to equations (2.11) ex-
tends up to frequency higher than ω0, i.e. up to few
THz, one would need to record the spectrum up to
such large frequencies.

– Second, one should be sure that the sole origin of the
spectrum is the rotation of the molecular anisotropy
tensor, and that the full dynamics is properly described
by equations (2.11).

While the first condition could be met, we have no
proof that the second condition is ever satisfied; in particu-
lar, other light scattering processes may play an important
role at frequencies larger than, typically, 30 GHz [29,30].
The comparison between the full depolarized back scat-
tering spectrum and equations (2.11) is thus meaningless.

However, equation (2.17) is only necessary to analyze
the low-frequency orientational dynamics (ω � ω0) of
molecular glassforming liquids. Such a spectrum repre-
sents the low frequency part of the Laplace transform of
some specific normalized orientational correlator. In real
time, such a correlator first decreases from a value equal
to unity to some smaller value on a time scale of the order
of ω−1

0 , and ends up, at much longer times, as a stretched
exponential. The low-frequency R(ω) spectra we need to
study in the present experiments are mainly the Laplace
transform of this final dynamics. This is why we shall rep-
resent R(ω) in the present paper by the Cole Davidson
function:

R(ω) = R0

[
1−

(
1

1 + iωτR

)β]
. (2.18)

This function is frequently used to approximate, for not
too large values of ωτR, the Laplace transform of a
stretched exponential, the relaxation time τR and the ex-
ponent β (that we shall, momentarily, call τRCD and βCD)
of equation (2.18) being related to the parameters of the
stretched exponential by a set of formulas given by Lind-
say and Patterson [31]. We want to stress here that the
discussion preceding equation (2.18) implies that the in-
tegral of the l.h.s. of equation (2.17) is smaller than π;
more precisely, it is equal to π multiplied by the t = 0
value of the stretched exponential, which is smaller than
one. When one makes use of equation (2.18), this yields
0 < R0 < 1, a condition which will need to be fulfilled in
the analysis we shall perform in Section 4.

In order to make clear the relationship between the
present approach and previous approaches which will be
discussed in Section 5, it is important to make the fol-
lowing remark. Equation (2.18) contains no signature of
the frequency of the microscopic motion. This is also true
for the ratio ωΓ̂ (ω)/ω2

0 through which R(ω) may be ex-
pressed (see Eq. (2.11a)) as well as for the quantity G(ω)
when Λ′/ω2

0 is replaced by Λ (see Eq. (2.13b)). This means
that the signature of the microscopic dynamics, namely
the term −ω in the r.h.s. of equation (2.11b), or the term

in
¨̄̄
Q(t) in equation (2.8a), does not need to appear in our

equations. In agreement with equation (2.5a), we could

have thus directly written, instead of equation (2.8a), the
simpler equation:

0 = ¯̄Q+ Γ−1 ⊗
˙̄̄
Q− Λµ⊗ ¯̄τ, (2.8b)

with:

Γ−1(t) =
Γ̂ (t)

ω2
0

; Λ =
Λ′

ω2
0

(2.6b)

provided that we accept to perform a Laplace transform
of equation (2.8b) without questioning its mathematical
meaning. Indeed, one can notice that equation (2.8b) has

no solution for which ¯̄Q0, the t = 0 value of ¯̄Q, is differ-
ent from zero. This is easily seen for the ⊥⊥′ component
where the last term of equation (2.8b) is absent: for t = 0,
the convolution product gives a contribution equal to zero
which implies that Q⊥⊥′(t = 0) is equal to zero. Our long
detour makes it clear that, provided we make use of the
additional coefficient R0 of equation (2.18), a purely re-
laxational form for Γ−1 and a careless use of the Laplace
transform of equation (2.8b) give the correct form3 for
R(ω) and an expression for the spectral profile, I(ω), in-
dependent of the microscopic frequency, ω0. This is the
direction we shall take in the rest of this paper, replacing
Γ̂ (ω)/ω2

0 by Γ−1(ω) and Λ′/ω2
0 by Λ in equations (2.11)

and (2.13).

2.5 Discussion of the term related to the shear
viscosity

The second term of equation (2.16), R1(ω), contains all
the information on the shear dynamics through the fre-
quency dependant shear viscosity, ηs(ω), in its denomina-
tor, the rotation-translation coupling function, µ(ω), and
the rotational friction force, Γ−1(ω) in both its numer-
ator and its denominator. (Note that R(ω) is expressed
through Γ−1(ω).) Let us study R1(ω) in the two regimes:
ω small or ω large with respect to some relaxation rate.
Three relaxation times are involved in, respectively, ηs(ω),
µ(ω) and Γ−1(ω) and we study in this section the two lim-
iting cases where ω is small (or large) with respect to the
inverse of these three times. One easily shows that the
ω small (or large) limits of ωµ(ω), ωΓ−1(ω), R(ω) and
ωηs(ω), have the same analytic properties, namely:

limω→0L(ω) ≈ iωL′ L′ real positive, (2.19a)

limω→∞L(ω) ≈ L∞ L∞ real positive, (2.19b)

L(ω) being any of these four quantities.

2.5.1 The low-frequency limit

Let us call µ′, Γ ′, R′ and η′, the values of L′ when L(ω) is
respectively equal to ωµ(ω), ωΓ−1(ω), R(ω) and ωηs(ω).

3 Note that this quantity appears not only as the first term
of the r.h.s. of equation (2.16) but also in the numerator and
in the denominator of R1(ω).
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Equations (2.13b, 2.19a) imply that the low-frequency
limit of G(ω) may be written as:

limω→0G(ω) = −ω2G′ (2.20a)

with:

G′ = Λ

(
µ′R′

Γ ′

)2

· (2.20b)

Since the low frequency limit of G(ω) is −ω2G′

(see Eq. (2.20a)) while, in the denominator of R1(ω)
(Eq. (2.13a)), 1−R(ω) tends towards 1 in the same limit:

limω→0R1(ω) = −
ω q2ρ−1

m G′

ω − iq2ρ−1
m η′

· (2.21)

Equation (2.21) requires some discussion.
First, in this ω → 0 limit, (1/ω) ImR1(ω) is a

Lorentzian with a negative intensity, a linewidth equal to
q2ρ−1

m η′ and an integrated intensity proportional to q2.
R1(ω) is exactly the Andersen-Pecora result [7], and, as
in their case, η′ must be identified with the static shear
viscosity ηs. As noted by these authors and verified by
e.g. Stegeman and Stoicheff [32], this result implies that
Brillouin scattering experiments performed in non-viscous
fluids (ηs ≈ 1 cp) allow for a direct determination of the
static shear viscosity.

Second, the static shear viscosity does not contain any
contribution from the rotation-translation coupling: this
viscosity originates here only from the motion of the cen-
ters of mass of the liquid, as in Quentrec’s approach [11]
(see Sect. 5).

Third, in the next two sections of this paper, we shall
analyze depolarized light scattering spectra performed in
a 90◦ geometry, in a temperature regime where ωτs > 1, ω
being in the GHz region, and τs the relaxation time asso-
ciated with ηs. Equation (2.21) will no longer be valid in
the frequency window of the experiment, but our analysis
will allow us to infer the whole function ηs(ω), thus its
ω → 0 limit, iη′. As η′ ≡ ηs, we shall be able to extract
the value of the static shear viscosity, ηs, from spectra
recorded in a frequency regime for which equation (2.21)
is not applicable.

2.5.2 The high frequency limit

Using equation (2.19b), one easily obtains, for the high
frequency limit of R1(ω):

R1(ω) =
q2ρ−1

m G∞

ω2 − q2ρ−1
m [η∞ −G∞(1−R∞)−1]

(2.22)

with:

G∞ = Λ

(
µ∞R∞

Γ∞

)2

, (2.23)

R∞, µ∞, Γ∞ and η∞ being the high frequency limits, re-
spectively, of R(ω), ωµ(ω), ωΓ−1(ω) and ωηs(ω). R1(ω)

thus describes, in the ω → ∞ limit, a propagating trans-
verse mode with zero linewidth and with velocity:

VT =

[
η∞

ρm

(
1−

G∞

η∞
(1−R∞)−1

)]1/2

=

[
η∞

ρm

]1/2

r.

(2.24)

η∞ plays here the same role as the shear modulus in the
usual Maxwell theory of viscoelasticity, and, as in any
other solid, the rotation-translation coupling, which en-
ters into equation (2.24) through G∞, decreases the sound
velocity in this high frequency regime.

The two limiting cases have thus, without any addi-
tional constraint, the behaviour expected from general
considerations for those quantities, a requirement which
was not generally met in previous approaches to the prob-
lem (see Sect. 5). Furthermore, as we pointed out at the
end of Section 2.5.1, the internal consistency of our ap-
proach can be checked through the direct measurement of
the static shear viscosity. Such a check will be performed
at the end of Section 4.

3 Experiment

An experimental test of the previous theoretical analy-
sis has been performed on metatoluidine, CH3-C6H4-NH2.
This is a molecular liquid which very easily remains in a
supercooled state when cooled below its melting temper-
ature. It is very difficult to crystallize and special tech-
niques had to be used to obtain its melting temperature,
Tm = 243.5 K, and its thermodynamic glass transition
temperature, Tg = 187 K [20].

The thermal variations of its refractive index and of
its density are given by [33]:

n(T ) = −4.5× 10−4 T (K) + 1.692(5) (3.1a)

ρ(T ) = −8.1× 10−4 × T (K) + 1.225(0). (3.1b)

Low temperature, low frequency depolarized light scatter-
ing spectra of metatoluidine were measured in two differ-
ent geometries for various temperatures. The first series
of experiments was performed in order to measure and
analyze the pure rotational α-relaxation spectrum over a
large frequency range (experimental details and results are
described in more details elsewhere [34,35]). They com-
bined a backscattering tandem Fabry-Pérot experiment
performed between 300 K and 260 K, a 90◦ scattering
confocal VH Fabry-Pérot experiment (between 245 K and
227 K) and a 90◦ scattering VH Photon Correlation Spec-
troscopy (PCS) measurements performed between 198 K
and 183 K.

- The tandem Fabry-Pérot intensity spectra were an-
alyzed by fitting to equation (2.17), with R(ω) given by
equation (2.18). This yielded an almost constant value for
βCD = 0.5, clearly different from βCD = 1, when the data
were analyzed in a large enough frequency range (typically
two decades), and a set of relaxation times τRCD(T ).
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- The PCS data were analyzed assuming that the
α-relaxation could be described by a stretched exponen-
tial (or Kohlrausch-Williams-Watts function). The τRK(T )
and βK(T ) values so obtained were converted into similar
constants in the Cole Davidson representation, τRCD(T )
and βCD(T ), using the equivalence formulas given by
Lindsay and Patterson [31].

- Because of a problem of overlapping orders, the spec-
tra obtained with the confocal interferometer cannot be
analyzed with both τ and β free. Therefore, the values
of βCD(T ) were interpolated in the intermediate region
of the confocal measurements, the analysis of which then
yielded the corresponding τRCD(T ) for this last series of
measurements. The whole set of orientational relaxation
times was fitted by a Vogel-Fulcher law, from which values
of τRCD(T ) were obtained for the intermediate tempera-
ture values used here; we shall simply call them, from now
on, τR(T ), or τR. They are given in the second column of
Table 1 and were used, in the data analysis performed in
Section 4, in conjunction with βCD = 0.5.

The second series of experiments consisted of 90◦ VH
light scattering experiments performed on the 8 pass
tandem Fabry-Pérot instrument already used for the
backscattering experiments, the light source being a Co-
herent Innova 90 monomode Ar+ laser (λ = 514.5 nm).
The spectra were recorded between 0.75 GHz and 8 GHz,
each spectrum consisting of about 300 data points on
the Stokes and Anti-Stokes sides. The spectra were sym-
metrized afterwards in order to improve the signal to noise
ratio. The sample was placed in a cryostat with tempera-
ture regulation better than 0.25 K and the measurements
were performed every 5 K from 248 K down to 208 K with
one additional measurement at T = 176 K, below Tg.

After completing the analysis of these 90◦ VH light
scattering spectra, some of the resulting parameters were
compared with the values of the static shear viscosity at
different temperatures. As previous measurements of this
shear viscosity did not extend, to our knowledge, below
245 K [36], we performed in Mainz lower temperature mea-
surements using a Rheometrics RHS-800 viscometer which
allowed us to obtain the shear viscosity from mechanical
friction measurements down to 191 K.

4 Data analysis and discussion

4.1 Data analysis

90◦ VH spectra for T = 248 K, 233 K and 208 K are shown
in Figure 1. At the highest temperature (248 K), a weak
bump (see also Fig. 2) emerges around 2.5 GHz from a
broad central peak while, at 208 K, the transverse phonon
appears as a narrow peak located at ≈ 4.5 GHz. Follow-
ing the analysis performed in Section 2 and the necessary
simplifications discussed in Section 2.4, these spectra were
fitted to:

I(ω) ≈
I1

ω
Im(R(ω) + cos2 θ

2
R1(ω)), (4.1)

with:

R1(ω)=
q2ρ−1

m G(ω)

ω2 − q2ρ−1
m [ωηs(ω)−G(ω)(1−R(ω))−1]− iωγ

,

(4.2)

where R(ω) is given by equation (2.18) and G(ω) by:

G(ω) = Λ

(
µ(ω)

Γ−1(ω)

)2

R2(ω), (4.3)

Γ−1(ω), which is the Laplace transform of Γ−1(t) appear-
ing in equation (2.8b), being related to R(ω) by:

R(ω) =
ωΓ−1(ω)

1 + ωΓ−1(ω)
· (4.4)

ηs(t) is a memory function which describes a viscoelastic
phenomenon; we postulated for it a form similar to R(ω):

ωηs(ω) = η0
s

[
1−

(
1

1 + iωτs

)β]
(4.5)

where, in the absence of further information, we chose the
same β = 0.5 value as for R(ω).

In principle, we should have had also to postulate
some form for ωµ(ω). This would have meant intro-
ducing at least two new parameters for this function
while Γ−1(ω) was entirely determined by R(ω) through
equation (4.4). A fit with so many parameters being unre-
liable, we postulated that the functional forms, the relax-
ation times and the stretching coefficients of ωΓ−1(ω) and
ωµ(ω) were close enough to take their ratio as a frequency-
independent quantity. This assumption allowed us to treat
Λ(µ(ω)/Γ−1(ω))2 in equation (4.3) as a temperature-
dependent constant in the data analysis.

Such a simplifying assumption was all the more nec-
essary because of our neglect of any high-frequency con-
tribution to R(ω) and ωηs(ω). It has been recognized for
several years that there is a need for additional damping
mechanisms which originate from the high frequency part
of the relaxation functions of the liquid [27], the so-called
fast relaxation processes. As a precise description of these
effects was out of the scope of the present paper, we as-
sumed, as a first-order approximation, that this additional
damping could be taken into account by adding a conven-
tional “fast damping” term, −iωγ in the denominator of
R1(ω), as shown in equation (4.2). Furthermore, γ which
might be taken as a temperature dependent quantity [37]
was assumed here not to depend on temperature in or-
der to avoid increasing the number of parameters to be
fitted. γ was thus determined by fitting a VH 90◦ spec-
trum measured at 176 K, i.e. at a temperature below Tg

to equation (4.2). At such a low temperature, the only
operative relaxation term is −iωγ, the relaxation times
related to ηs(ω) and R(ω) being essentially infinite. This
procedure fixed the value of γ to γ = 0.085 GHz.

A first series of fits was performed using equations (4.1)
to (4.5), in which we took τR = τs as a fitting parameter.
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Table 1. Fitting parameters for metatoluidine VH spectra. τR is taken from [34], (see footnote 4); τs, η
0
s , Λ(µ/Γ−1)2 and R0 are

obtained from the fits of the spectra to equations (4.1) to (5.5), using the additional parameters β = 0.5 and γ = 0.085 GHz; r
and VT are deduced from the fitting parameters (Eq. (2.24)) as well as βη0

s τs. ηs is the static shear viscosity (values interpolated
from the mechanical spectroscopy measurements).

T τR τs η0
s Λ

(
µ

Γ−1

)2
R0 r VT βη0

s τs ηs

[K] [ns] [ns] [108Pa] [108Pa] [m/s] [Pa.s] [Pa.s]
248 0.9 0.23 4.8 0.8 0.58 0.93 640 0.05 0.06
243 1.6 0.25 5.9 1.0 0.61 0.91 690 0.075 0.07
238 3.2 0.35 7.6 1.4 0.63 0.89 778 0.13 0.13
233 6.9 0.45 8.5 1.8 0.60 0.89 805 0.19 0.29
228 17.2 1.0 9.1 2.1 0.53 0.92 844 0.45 0.75
223 50.4 2.1 9.9 2.2 0.56 0.91 883 1.05 2.0
218 182 4.1 10.2 2.6 0.46 0.94 926 2.1 8.4
213 870 5.8 11.0 1.5 0.68 0.89 960 3.2 37
208 6112 12.0 13.8 1.6 0.71 0.89 1020 8.3 246
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Fig. 1. VH 90◦ scattering spectra at 248 K (�), 233 K (◦) and 208 K (N), respectively.

The fitting parameters were thus τR, η0
s , R0, Λ(µ/Γ−1)2

and the normalization factor I1. Though quite reasonable
fits could be obtained at nearly all temperatures, the relax-
ation times so obtained were, at each temperature, much
shorter than the value of τR determined from the depo-
larized backscattering spectra by a factor of close to 3 at
248 K and larger than 10 at 218 K. This indicated that
our assumption of an unique relaxation time for all the
memory functions was unrealistic [28].

A second series of fits was thus performed fixing τR(T )
at the value determined in [34,35] and fitting all the other
parameters as before with τs free. Though we did not in-
crease the number of parameters, the quality of the fit
improved and, as expected, the values of τs(T ) were sys-
tematically shorter than τR(T ). In Figure 2, examples of
the quality of the fits are given for two temperatures,
T = 248 K and T = 233 K. The entire set of param-

eters either used as input data (T and τR) or obtained
from those fits is given in Table 1.

4.2 Discussion of the results

4.2.1 Relaxation times

The values of the two relaxation times τR and τs are given4

in columns 2 and 3 of Table 1, and shown in Figure 3.
Although no error bars are given in this figure, two points
need to be made.

- First, there are some uncertainties in the values of
τR (called τRCD in Sect. 3) obtained through the methods

4 Due to an error in a file, the values of τR were incorrectly
reported in the corresponding column of [21]. Column 2 of the
present Table 1 gives the correct values for these rotational
times.
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Fig. 2. Continuous line (—): fits to the data, using equations (4.1) to (5.5): at left, 248 K; at right, 233 K; dashed line
(– – –): R(ω) contribution (Eq. (2.18)) to the spectra; (4): corresponding backscattering spectrum at 233 K.
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Fig. 3. Reorientational relaxation time, τR(�), [34] and vis-
coelasticity relaxation time, τs(N), obtained from the fitting
of spectra similar to those of Figure 1 with equations (4.1) to
(4.5), as a function of temperature.

described in that Section. We estimated [34,35] the cor-
responding relative error on τR to be approximately 40%.
This error is by far the largest uncertainty in the whole
fitting procedure, and it gives nearly the same value for
∆τs/τs, the two quantities being strongly correlated.

- Second, the magnitude of this relative error is correct
only as long as the value of γ introduced in the denomi-
nator of R1(ω) plays a minor role in the determination of
τs. With γ = 0.085 GHz, this is the case for τs < 1 ns.
The situation is different for longer relaxation times: the

low-frequency cut-off of our experiment, 0.75 GHz, makes
no longer accessible the contribution of the correspond-
ing relaxation mechanism to the Rayleigh wing; τs is then
mostly deduced from the bare linewidth of the transverse
phonon peak, which correlates the values of γ and τs. As
in the fitting of the data, γ mimics all the fast relaxation
processes which take place in a supercooled liquid, it is
the neglect of the temperature variation of these processes
which is the main source of error on τs at the lowest tem-
peratures.

Keeping those remarks in mind, we see that the re-
sult of our data treatment, which can be represented by
an Arrhenius behaviour for τs over the whole temperature
range, is, presumably, largely artificial at low temperature.
Conversely, the factor 3, seen in Figure 3 between τR and
τs at 248 K, cannot be accounted for by the uncertainty
on τR or additional uncertainties on τs; similarly, the in-
crease of the ratio τR/τs between 248 K and 223 K may not
be related to the uncertainty on γ at those temperatures.
This difference between two relaxation times, τR and τs in
the present case, is not new in the field of the liquid-glass
transition of molecular liquids; it originates from the fact
that τR is related to an orientational dynamics while the
relaxation times corresponding to other variables may be
related to different damping mechanisms: here, τs char-
acterizes the shear friction forces related to the centers
of mass motion (see Eqs. (2.7, 4.2)) decoupled from the
associated rotations. Similar differences have been found
between τR and the relaxation times τL associated with
the damping of the longitudinal acoustic phonons: for in-
stance, at the highest temperature where it has been mea-
sured, τL is 12 times shorter than the corresponding τR in
salol [26] and 4 times shorter in metatoluidine [34,35].
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Fig. 4. Temperature dependence of η0
s , shear modulus at infi-

nite frequency, obtained by the same technique as for Figure 3.

4.2.2 Infinite frequency shear modulus η0
s (T)

and the transverse sound velocity

Figure 4 represents the thermal variation of η0
s ≡ η∞,

the infinite frequency limit of ωηs(ω). As recalled in
the introduction and shown more precisely in equations
(2.22, 2.19b), in the absence of rotation-translation cou-

pling, the square root of this quantity divided by ρ
−1/2
m ,

should give the velocity of the transverse modes for ωτs�1.
In the Maxwell treatment of viscoelasticity, this quan-
tity has been supposed to be temperature independent.
We see that it is not at all the case, an extrapolation of
η0

s to higher temperatures suggesting a rather low value
(≈ 108 Pa) at 280 K, i.e. approximately 100 K above Tg.

Table 1 gives also the value of r, the reduction fac-
tor, (see Eq. (2.24)), which is the ratio between the actual
velocity of transverse waves at infinite frequency and the
value it would have in the absence of rotation-translation
coupling. We find that r is nearly constant over the whole
temperature range. As the position of the peak in the spec-
tra is not very sensitive to the value of ωτs, when that
quantity is larger than 1, the absence of thermal variation
of r allows us, in the present case, to read off the value
of η0

s , up to a r−1 scale factor, directly from the recorded
spectra.

Let us finally note that r depends on R∞, which is
equal to the coefficient R0 in equation (2.18) discussed
in Section 2.4. Column 6 of Table 1 shows that, this co-
efficient is always smaller than one, as predicted in that
section.

4.2.3 Comparison with static shear viscosity data

A severe test of the validity of the theory can be obtained
from a comparison between the values of the static shear
viscosity deduced from the analysis of our light scattering
spectra, and their direct measurement briefly described at
the end of Section 3. Using equations (2.19a, 2.21, 4.5), one
finds that the static shear viscosity, ηs, should be equal to:

ηs = β η0
s τs, (4.6)

where each term of the r.h.s. is known, either from [35] or
from the present fits. Figure 5 presents those results as the
logarithm of the shear viscosity versus temperature and
the corresponding values are also reported in Table 1. Both
sets of values agree well, within the possible accuracy of
the measurements, between 248 K, just above the melting
temperature, and 223 K, that is, for a variation of ηs from
0.06 Pa.s (0.6 p) to 2 Pa.s (20 p). The divergence which
takes place at lower temperatures is due to the effects
of fast relaxation processes in this temperature range, as
discussed in Section 4.2.1.

5 Relationship with previous studies

In nearly every paper published since 1975 on the simul-
taneous appearance of a central peak and a transverse
Brillouin doublet in the depolarized spectra of supercooled
liquids formed of anisotropic molecules, the relationship
between the model used for the data fitting and previous
models has been discussed. In particular, the problem of
the relative intensity of these two spectral features and
of the form of the dispersion relation, ω(q), have been
frequently dealt with. However, there has been very little
discussion on the consistency of the equations appearing in
these papers with respect to the phenomena they describe.
Concentrating on that aspect of the problem, we proposed
to write down a set of equations in which the temperature
evolution of the relaxation times leads naturally to correct
high and low temperature limits, and which give equally
good fits to the recorded spectra with a minimal number
of parameters. In this penultimate section, we shall review
some aspects of the earlier works concerning the appear-
ance of transverse waves in these supercooled molecular
liquids and analyze the mechanism(s) through which these
transverse modes appear, emphasizing their relationship
to and their differences with the present work. In order to
simplify the discussion and the writing of the equations,
throughout this section, we shall renormalize the various
variables ¯̄Q so that they have the same dimension (inverse
of a time) as ¯̄τ .

5.1 Equations of motion in the two-variable theories
without retardation effects

The original papers of Keyes and Kivelson [6] and of
Andersen and Pecora [7] were the first to propose a two-
variable theory which could explain the existence of the
Rytov dip at high temperature and its change into prop-
agative transverse modes at lower temperatures. They did
not make use of an equation of motion for the mass current
density (Eq. (2.2)), i.e. they did not make explicit the ex-
pression of the shear tensor. Nevertheless, one can recast
their equations into the formalism of the present paper.
Restricting oneself, as they did, to the traceless parts of
the strain rate tensor ¯̄τ and of a tensor ¯̄Q assumed to be
proportional to the anisotropic part of the polarizability
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Fig. 5. Comparison between βη0
s τs (�) as obtained from the fit parameters reported in Table 1, and the Couette’s viscosity

measurements (◦), as a function of temperature. The inset presents static viscosity data over a larger range of temperature:
(H) from [48] and (×) from [36].

tensor, one obtains, in the case of Andersen and Pecora [7]:

¯̄σ = ηs(1−R)¯̄τ − Γ12
¯̄Q (5.1a)

0 = −Γ ∗12
¯̄τ − Γ22

¯̄Q−
˙̄̄
Q (5.1b)

using here notations as close as possible to their original
paper. These equations make clear that, as their coeffi-
cient R lies between zero and one, only part of the full
static shear viscosity, ηs, couples the shear strain rate ¯̄τ
to ¯̄σ and also that the molecular orientations are taken
into account through the variable ¯̄Q, (and not its time

derivative,
˙̄̄
Q) in equation (5.1a). As we shall see in equa-

tion (5.3), this difference is responsible for the fact that
the static shear viscosity is renormalized by the rotation-
translation coupling, which explains the introduction of
the additional parameter R in their equations (we do not
discuss here the Keyes and Kivelson paper because both
papers obtain exactly the same final formula, though they
start from slightly different points of view).

On the contrary, Quentrec [11], who made explicit use
of the stress tensor, took into account the molecular ori-

entation through the variable
˙̄̄
Q, and, in the two-variable

form of his theory, his equations of motion reduce to:

¯̄σ = ηs ¯̄τ + 2α12
˙̄̄
Q (5.2a)

0 = −2α∗12
¯̄τ − 2α22

˙̄̄
Q− a ¯̄Q (5.2b)

sticking again here as closely as possible to the notations of
the corresponding paper; in contradistinction with equa-
tion (5.1a), his approach does not require the use of the

extra parameter R and it is the total static shear viscosity,
ηs, which appears, in equation (5.2a).

In this Section 5.1, we briefly discuss some conse-
quences of these two sets of equations. It is easily seen that
it is not possible to measure separately the coefficients
entering into equations (5.1, 5.2) and that one cannot
discriminate between the two equations in the high tem-
perature regime, where the Rytov dip is detected. One can
also examine the consequences of these equations at low
temperature, i.e. for viscous fluids in which propagative
transverse waves can be observed. This second situation
also does not allow for an independent determination of
the coefficients entering those equations but we shall show
that the very existence of propagative waves at such tem-
peratures involves a nearly complete cancellation between
some of these coefficients which have no fundamental rea-
son to take place. These equations will also give an incor-
rect role to the rotation translation coupling because they
make it responsible for the appearance of the transverse
waves while it should actually decrease their velocity: they
propose the wrong sign for this effect. Though no low tem-
perature spectrum of a supercooled liquid could be fitted
to either of those two sets of equations [8,9,11], it is worth
demonstrating those two incorrect low temperature effects
here because they will show up, under rather similar but
more complex forms, in the three (or more) variable the-
ories we shall discuss in Section 5.2. The two cases we
shall treat in this part will be free from the mathematical
intricacies introduced by the use of more variables.

Let us start with the Andersen-Pecora approach. Solv-
ing equations (5.1) together with equation (2.2), the de-

nominator of the correlation function related to ¯̄Q is easily
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found to be, in the general case:

DAP = iω + q2ρ−1
m

(
ηs(1−R) +

ηsR

1 + iωτ

)
, (5.3)

where, following [7], we have transformed the notations
of equations (5.1) into Γ−1

22 = τ and |Γ12|2/Γ22 = ηsR
(we note that the purpose of introducing the additional
parameter R into that equation is to identify the paren-
thesis of the r.h.s. of equation (5.3) with the static viscos-
ity, ηs, in the high temperature regime where ωτ � 1).
At low temperature, one expects ηs to increase roughly as
quickly as the α-relaxation time τ . To get the same kind
of variation for ηsR requires that Γ12 stays approximately
constant. Taking thus ωτ � 1 and multiplying both sides
of equation (5.3) by −iω yields, in leading orders:

−iωDAP = ω2 − q2ρ−1
m

(
ηsR

τ
+ iω ηs(1−R)

)
. (5.4)

Equation (5.4) makes it clear that propagative shear
modes with a finite sound velocity are possible at low
temperature because ηs/τ does not diverge, even in this
temperature region. But, in order for these modes not to
be overdamped, ηs(1 − R) must remain finite and small
with respect to ηs/τ . Thus, R must tend towards 1 with
ηs(1 − R) ≈ const., a condition which does not seem to
be very physical. Furthermore, as mentioned above, the
transverse-mode velocity originates from ηsR/τ ≡ |Γ12|2:
the existence of such propagative modes is the conse-
quence of the rotation-translation coupling rather than
of viscosity. This result is counter-intuitive.

The same discussion can be made in the Quentrec
case [11] because its dynamical equation can be cast in
exactly the same mathematical form as for the Andersen-
Pecora’s theory. Let us demonstrate it for the denomi-
nator of the correlator discussed in equation (5.3). Using
equations (5.2) this denominator reads:

DQ = iω + q2ρ−1
m

(
ηs −

4iω|α12|2

a+ 2iωα22

)
(5.5)

which can be transformed into:

DQ = iω + q2ρ−1
m

(
ηs − η

′
s +

η′s
1 + iωτ

)
(5.6a)

with:

η′sτ = 4|α12|
2/a τ = 2α22/a. (5.6b)

The Quentrec condition for the existence of underdamped
transverse propagative modes is that ηs−η′s remains finite
and small with respect to ηsτ

−1 (compare with Eq. (5.3)).
As, in Quentrec’s theory, both α12 and α22 are roughly
proportional to τ , such a condition is not impossible but
it requires, again, a cancellation between a priori un-
correlated coefficients; also, the non zero value of the
transverse-wave velocity originates, once more, solely from
the orientation-translation coupling.

Before closing this part, let us note that [6,7] were
published at the same time as the papers by Ailawadi
et al. [14] who proposed to describe, in hydrodynamic
terms, the orientational motion of the molecules and their
coupling with the centers of mass motions through equa-
tions first derived by de Groot and Mazur [38]. These
equations introduce a variable ω̄ which is the local av-
erage of the molecular angular velocity and an antisym-
metric contribution to the stress tensor: the two equations
which replace equations (5.1) or (5.2) in their theory read,
for the case of transverse waves [14b]:

¯̄σ = ηs ¯̄τ + ηr
¯̄̄
L · (rot v − 2ω̄) (5.7a)

ρI ˙̄ω = 2ηr(rot v− 2ω̄) (5.7b)

where we have, again, used notation as close as possible
to the original paper, v(r, t) being the velocity field of the
particles, ρI the mean density of the average moment of

inertia and
¯̄̄
L the usual Levi-Civita tensor. Furthermore,

it was proposed in [14b] that the Rytov dip would be de-
tected through the antisymmetric part of a local dielectric
tensor which would read:

¯̄ε = X1
¯̄̄
L · (rot v − 2ω̄), (5.8)

the rot v contribution being negligible with respect to that
of ω̄ in the case of light scattering by a liquid in thermal
equilibrium. Though the form of equation (5.8) is rather
awkward, one may note that, through the neglect of the
rot v term and the form of the Levi-Civita tensor, ε⊥⊥′ is
proportional to ω‖ and ε⊥‖ to ω⊥′ . If one performs a trans-
formation in equations (5.7, 5.8) in which ω‖ is changed
into

√
ρIQ⊥′⊥ and ω⊥′ into

√
ρIQ⊥‖ one finds, after a

lengthy but straightforward calculation, that, as far as
the transverse modes are concerned, the solutions of equa-
tions (5.7) and the spectrum derived from equation (5.8)
are identical to the solutions which can be derived from:

¯̄σ = (ηs − ηr)¯̄τ ±
2ηr
√
ρI

¯̄Q (5.9a)

0 = ±
2ηr
√
ρI

¯̄τ −
4ηr

ρI

¯̄Q−
˙̄̄
Q (5.9b)

the motion of ¯̄Q being detected through a local dielectric
tensor of the form:

¯̄ε = b ¯̄Q. (5.10)

As already noticed by Ailawadi and Berne [39], from a
formal point of view, the equations proposed in [14b]
are thus, for the transverse modes, identical to those
of [6] or [7]. Nevertheless, the comparison between
equation (5.1b) and equation (5.9b) shows an important
difference, namely that the width of the central peak pre-
dicted by equations (5.9) is proportional to ηr. In order
to reproduce the experimental facts, ηr has thus to de-
crease with decreasing temperature, contrary to an usual
viscosity coefficient. In such a case, the role of ηr becomes
negligible at low temperature in equation (5.9a) and the
whole shear dynamics is governed by the shear viscosity.
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As noted in [14b], transverse modes could still propagate if
the constant ηs would be transformed into a memory func-
tion, but the rotation-translation coupling would play no
role in the value of the velocity of the transverse waves, a
result which is, again, counter intuitive.

5.2 Equations of motions in the three-variable theories
without retardation effects

As early as 1976, it was recognized that these two vari-
able theories could not fit correctly the depolarized spectra
containing propagative waves but the two theoretical dif-
ficulties pointed out at the beginning of Section 5.1 were
not identified. Most authors rather tried to improve the
quality of their fit by introducing at least one more dynam-
ical variable linearly coupled to the two variables already
introduced, a technique which was actually suggested by
some theoreticians even before this failure was reported
(see, e.g. [40,41]). Because we are only interested here in
the role of these extra variables in changing the origin of
propagative transverse waves at low temperature, we shall
ignore these two early papers.

Let us start by discussing a very simple case which
will allow us easily to correlate the many variable tech-
nique with the two variable memory function technique
used in Section 2. Analyzing salol data over a large tem-
perature range, Vaucamps et al. [10] proposed to improve
over the original Andersen-Pecora model by (i) ignoring
the existence of an intrinsic viscosity of the liquid, and
(ii) imposing that the mass current couples to two dy-
namical variables not directly coupled one with the other;
finally, only one of these variables was supposed to cou-
ple with light. Using the Andersen-Pecora notations of
equation (5.1), one thus obtains the following set of equa-
tions:

¯̄σ = −Γ12
¯̄Q2 − Γ13

¯̄Q3

0 = −Γ ∗12
¯̄τ − Γ22

¯̄Q2 −
˙̄̄
Q2

0 = −Γ ∗13
¯̄τ − Γ33

¯̄Q3 −
˙̄̄
Q3. (5.11)

In such a case, it is a simple matter of algebra to eliminate
the variable which does not couple with light, sayQ3. This
yields the new set of equations:

¯̄σ = ηs ⊗ ¯̄τ − Γ12
¯̄Q2

0 = −Γ ∗12
¯̄τ − Γ22Q2 −

˙̄̄
Q2 (5.12)

with:

ηs(t) = |Γ13|
2e−Γ33t ≡ η0

s e−t/τ . (5.13)

In other words, Vaucamps’ method introduces, implic-
itly, a viscoelasticity of the Maxwell type, as can be seen
through the appearance of a convolution product in the
first equation of equations (5.12). The unrealistic condi-
tion of a small value for the coefficient ηs(1−R) at low tem-
perature which was necessary with the Andersen-Pecora
equations (see Eq. (5.3)) is then automatically eliminated.

Yet, as in that theory, the “normal” variable Q2 con-
tributes to a renormalization of the static shear viscosity
at high temperature and gives a positive contribution to
the transverse-wave velocity at low temperature, the ra-
tio |Γ12|2/Γ22 ≡ ηsR still playing the same role: it is thus
not surprising that, in the numerical analysis of their ex-
periment, Vaucamps et al., who determined R through a
direct determination of ηs, obtained a value of R approx-
imately constant and low in the region of the Rytov dip,
constant and close to unity in the region of the propaga-
tive transverse waves, with an abrupt jump from one value
to the other in the temperature region where none of those
features was visible.

In the general case where the third variable Q3 (or its
time derivative) is linearly coupled to the two other dy-
namical variables, the technique of eliminating it through
a Laplace Transform of the initial equations, followed, af-
ter its elimination by an inverse Laplace Transform can be
generalized for the two cases studied in Section 5.1. Let
us start with the Quentrec case where the introduction
of Q3 was already proposed in [11]. The generalization of
equations (5.2) to three variables leads to the new set of
equations:

¯̄σ = ηs ¯̄τ + 2α12
˙̄̄
Q2 + 2α13

˙̄̄
Q3 (5.14a)

0 = −2α∗12
¯̄τ − 2α22

˙̄̄
Q2 − a

¯̄Q2 − 2α23
˙̄̄
Q3 (5.14b)

0 = −2α∗13
¯̄τ − 2α∗23

˙̄̄
Q2 − 2α33

˙̄̄
Q3 − b

¯̄Q3. (5.14c)

The elimination technique recovers equations (5.2) where
each product is replaced by a convolution product where,
e.g., ηs is replaced by:

ηs(t) =

(
ηs −

2|α13|2

α33

)
δ(t) +

2b|α13|2

α2
33

exp

(
−

bt

2α33

)
,

(5.15a)

similar expressions holding for α12(t) and α22(t). The
modified equations (5.2) are thus formally identical to the
set of equations (2.7, 2.8b). There are, nevertheless, two
important differences between those two sets of equations:

- One is that the second part of the memory function
of equation (5.15) is a Debye relaxation function with a re-
laxation time 2α33/b totally determined by the dynamics
of the individual variable Q3. The same relaxation time
will appear for the memory functions α12(t) and α22(t):
adding one variable always results in a Debye relaxation
mechanism identical for the shear viscosity and the rota-
tional dynamics; if more than one variable would be lin-
early added, a more complex dynamics could be found,
ηs(t), α12(t) and α22(t) being the sum of different Debye
relaxation processes with the same relaxation times but
different weighting factors for the three functions.

- A second difference with equations (5.7, 5.8b) is that,
unless ηs = 2|α13|2/α33 (with similar conditions for the
delta functions appearing in α12 and α22), the high fre-
quency behaviour of Q2(ω) at low temperature will still be
dominated by these delta functions, i.e. by the terms stud-
ied in Section 5.1: the propagation of transverse acoustic



C. Dreyfus et al.: Light scattering by transverse waves in supercooled liquids and application 415

phonons will still require a special cancellation between
the amplitudes of these delta functions and this propaga-
tion will still be due to the rotation-translation coupling.

These aspects of the three variable theory of
Quentrec [11] and of a further generalization to a four
variable theory [42] were not noticed in a study of benzyl
benzoate [43,44] because the authors concentrated their
analysis on restricted parts of the spectra.

The same type of problems arise in the case of the
Andersen-Pecora formulation. Its generalization to three
variables was performed by Chapell et al. [12] and to four
variables by some of the same authors in [13]. Their elimi-
nation recovers the set of equations (5.1) where each prod-
uct is changed into a convolution product with, e.g., in the
case of a three variable theory:

ηs(1−R)→ η′s(t) = ηs(1−R) δ(t) +
|Γ13|2

Γ33
exp(−Γ33t)

(5.15b)

which is exactly the expression found in the case of
Vaucamps et al. [10], similar expressions holding now for
Γ12(t) and Γ22(t), though with different signs. These quan-
tities trivially generalize those of equations (5.1). One can
thus make the same remarks for the Chapell et al. general-
izations as for the Quentrec’s one about the uniqueness of
the relaxation times or their Debye character, about the
condition for propagation of transverse acoustic waves at
low temperature or the origin of their velocity; in particu-
lar, in the case of the iono-organic molecular glassformer,
triphenylphosphite, though Chapell et al. [12] assumed, as
Vaucamps et al. did, that ηs(1−R) of equation (5.15b) is
equal to zero, a definition of R similar to the one discussed
in this previous case led to results not substantially differ-
ent: R changed from a value of 0.4 at high temperature to
a value of ∼ 0.8 for viscosities of a few poise, the change
being simply smoother than in [10].

5.3 Equations of motion with explicit retardation
effects

After the introduction of viscoelastic phenomena in the
hydrodynamic equations by Maxwell [2] and Mountain [1]
and an allusion to their role by Ailawadi et al. [14b], Wang
was the only author, to our knowledge, to make explicit
use of this notion and, more generally, of the idea of phe-
nomenological retarded interactions related to variables
appearing explicitly in these equations. This method ap-
peared in several papers, the most important being pre-
sumably [15,18,19,45].

Wang’s first attempt [18] is formally equivalent to
the two equations (5.12) which describe the model of
Vaucamps et al. [10] once the variable Q3 has been elimi-
nated; indeed, this model may be summarized as follows:

a) ηs(T ) is represented by the sum of two relaxation
phenomena:

ηs(T ) = η01
s e−t/τ1 + η02

s e−t/τ2 . (5.16)

b) For all the temperatures used and in the frequency
window of the Brillouin experiment, τ1 is so short that
ωτ1 � 1, while, conversely, τ2 is so long that ωτ2 � 1.
Also, η01

s and η02
s may vary strongly with temperature.

As a consequence, one obtains:

ωηs(ω) = iωη01
s τ1 + η02

s ≡ iωη +G0 (5.17)

where, for some temperatures, G0 may be equal to zero.
This model described successfully a parametrized form

of the data obtained by Enright et al. [9] in salol, the su-
percooled liquid which had already been successfully fitted
by Vaucamps et al. [10]. In Wang’s analysis, G0 is equal
to zero as long as the transverse modes do not appear in
the spectra and represents the unrenormalized shear mod-
ulus at infinite frequency when these modes are visible.
Yet, the equivalence between this model and the model of
Vaucamps et al. make them suffer from the same defects:
in particular, at low temperatures, one can obtain a de-
cent fit to the spectra but the corresponding physics is not
correctly described.

In later papers, [15,19,45], Wang introduced retarda-
tion effects more formally in ηs(t) and also in the descrip-
tion of the rotational dynamics and of its coupling with the
transverse current. As mentioned in Section 2, in Wang’s
formalism [15], equation (2.8a) reads:

0 = −ω2
0 ⊗

¯̄Q− Γ ′
˙̄̄
Q+ Λ′µ⊗ ¯̄τ (5.18a)

which is equivalent to:

˙̄̄
Q = −γ ⊗ ¯̄Q+ µ̃⊗ ¯̄τ with γ(t) =

ω2
0(t)

Γ ′
· (5.18b)

Equation (5.18b) shows that retardation acts on the di-
rect force, γ(t), in Wang’s formalism, and not on the
friction force, as in equation (2.8b). Such an equation is
definitely more legitimate from a mathematical stand-
point that our equation (2.8b): its Laplace transform is
always well behaved. In particular, if one considers its
projection on the two directions u⊥ and u⊥′ defined in
Section 2, one obtains with notations similar to those of
equations (2.9) to (2.11):

Q2
⊥⊥′(ω) =

1

ω
R(ω)〈|Q0

⊥⊥′ |
2〉 (5.19a)

with:

R(ω) =
ωΓ ′

ωΓ ′ − ω2
0(ω)

· (5.19b)

We may remark that, if we forget about the mathemat-
ical difficulties related to the Laplace transformation, in
principle, equation (5.19b) and equation (4.4) should rep-
resent the same physics and this could be, in principle,
achieved by imposing the relation:

ω2
0(ω)

ωΓ ′
= −

[
ωΓ̂ (ω)

ω2
0

]−1

. (5.20)
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But the spirit of the phenomenological approaches dis-
cussed in this paper is different: the memory functions
which are introduced must represent some plausible form
of a relaxation process because one assumes that the cor-
responding variables have a relaxing dynamics. That was
the approach used in Section 2 and we have seen that it
is always the case with the memory functions which can
be built from Section 5.2. Following the same line of rea-
soning and in agreement with the generalizations found
there, the simplest possible form for ω2

0(t) is:

ω2
0(t) =

Ω2

τ
exp

(
−
t

τ

)
(5.21)

which yields:

1

ω
Im

Q2
⊥⊥′(ω)

〈|Q0
⊥⊥′ |

2〉
=

Γ ′Ω2

(ω2τΓ ′ −Ω2)2 + ω2Γ ′2
· (5.22)

If 2Ω2 > Γ ′2, equation (5.19) will have a minimum at
ω = 0 and a maximum at ω2 = (Ω2−Γ ′2/2)(τΓ ′)−1. This
simple example emphasizes the fact that equation (5.19b)
does not allow for a fit of the rotational part of the
spectrum unless one imposes an unphysical form for
the supposed retarded interaction. The modifications of
these equations performed in [45] or [19] did not change
equation (5.18a) and they thus lead to the same difficulty.

6 Summary and perspectives

In this paper, we have discussed the structure of the hydro-
dynamic equations pertinent to the case of a fluid formed
of anisotropic molecules. Pointing out the physical origin
of the interactions which need to be taken into account, we
have indicated that the form proposed by Quentrec [11]
was consistent with the usual expression of the stress ten-
sor, in the case of liquids with small shear viscosities. We
have also shown that this form was conveniently amenable
to a phenomenological introduction of retardation effects,
when the latter have to be taken into account as is the
case for supercooled liquids. This led, for one of these
equations, to a form which differed from the expression
originally proposed by Wang [15]. We have discussed the
low and high frequencies limits of our results and we have
shown that they behave as expected in those two regimes.
This was generally not the case with other formulations
in their high frequency (or low temperature) limit: shear
waves could propagate in this regime but this propaga-
tion always required accidental cancellation effects; also,
the coupling between the shear motion and the molecular
reorientations did not have the expected influence on the
transverse mode velocity.

Metatoluidine, a molecular fragile glass forming liquid
was chosen to test the validity of our equations. Mak-
ing use of two (90◦ and 180◦) scattering geometries, we
have analyzed the corresponding depolarized Rayleigh-
Brillouin spectra; those were measured with the excellent
contrast and large free spectral range available with an

8 pass tandem Fabry-Pérot interferometer which allowed
for a precise description of their intensity profiles. Making
as few approximations as possible for the theoretical ex-
pressions, we have found a good consistency between the
value of the static shear viscosity, ηs, from direct viscos-
ity measurements and from experiments performed in a
regime where the shear waves were propagative (and not
diffusive, as a priori implied by the use of such a constant).
This was true for temperatures at which we expect our
spectra to give a reasonable determination of the shear
viscosity relaxation time, τs, and the discrepancy found
at low temperature is understood as a consequence of the
neglect of the temperature variation of the fast relaxation
processes.

Our analysis of metatoluidine and the equations ob-
tained in the present paper lead to a certain number of
new problems. Let us mention two of them:

We have measured, for the first time, the shear relax-
ation time, τs, and found it to be always shorter than the
reorientation relaxation time, τR associated with the reori-
entation of the molecules. Experiments performed on the
propagation of longitudinal phonons in the supercooled
molecular glass forming liquids have been, up to now, an-
alyzed with the help of phenomenological expressions (see,
e.g., [26,27,34,35]) making use of only one relaxation func-
tion for the longitudinal viscosity. Once ηs(ω) and R(ω)
are determined, the expression (A.14) proposed in the Ap-
pendix A of the present paper for the spectral shape of
these phonons allows us, in principle, to determine a bulk
viscosity relaxation time, τb, associated with an expres-
sion of a bulk-viscoelasticity function, ηb(ω), analogous to
equation (4.1). It will be important to find out whether
there is some measurable difference between τs and τb in
the temperature range where the difference we found be-
tween τR and τs cannot be attributed to our use of a con-
stant value of the additional damping constant, γ.

Another question is related to the temperature vari-
ation of the coefficient η0

s , the infinite frequency limit of
ωηs(ω) (see Eq. (4.5)). Measurements of transverse spec-
tra similar to those reported here have already been made.
This is, in particular, the case for Wang and his collab-
orators who recorded spectra in fragile molecular glass-
forming liquids such as orthoterphenyl [17] or salol [16].
In those supercooled liquids, the frequency of the peak as-
sociated with the transverse phonon also decreases with
increasing temperature: in both cases, its extrapolated fre-
quency appears to go to zero approximately 100 K above
Tg, as it is the case for metatoluidine (see Sect. 4.2).
Those papers proposed that the thermal evolution of the
rotation-translation coupling , the r factor of Section 4.2.2,
could play an important role in the decrease of the shear
velocity of the corresponding liquid but they could not
base this statement on a really quantitative analysis of
the corresponding spectra. As metatoluidine appears to
be similar in many respects to those two other molecular
glassformers [46,47], a complete analysis of those trans-
verse spectra needs to be made before a firm conclusion
on the thermal evolution of their η0

s and r factor can be
made. The similarity between the published spectra and
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those analyzed here suggests that, as in metatoluidine, it
is η0

s , rather than r, which decreases strongly with increas-
ing temperature; this problem clearly needs to be looked
at more carefully in further studies.
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Appendix A.1

We briefly describe here how one obtains equations (2.11)
and (2.13), which are the basis of the interpretation of our
experimental data.

We make use here of a Laplace-Fourier transform tech-
nique in which:

f(q, ω) = i

∫∫∫
d3r

∫ ∞
0

dtf(r, t)ei(q.r−ωt) (A.1)

and we thus look for the frequency dependence of the
Laplace transform of normalized correlation functions
〈f(q, t)f(q, 0)〉, the time derivative of which are equal to
zero at time t = 0.

Also, we assume, for the sake of simplicity, that the
memory functions are local in space. Omitting the q de-
pendence when not necessary, we first perform the space
Fourier transform of equations (2.1, 2.2, 2.7 and 2.8a).
This yields:

ρ̇(t)− iqJ‖(t) = 0 (A.2)

J̇i(t) + iqσi‖(t) = 0 (A.3)

σi‖(t) = −(c2ρ(t) + iq(ηb(t) +
1

3
ηs(t))⊗ v‖(t))δi‖

− iq ηs(t)⊗ vi(t)− µ(t)⊗ Q̇i‖(t) (A.4)

Q̈ij(t) + Γ ′(t)⊗ Q̇ij(t) + ω2
0Qij(t)

+ iqΛ′µ(t)⊗ (vi(t)δj‖ + vj(t)δi‖ −
2

3
v‖(t)δij) = 0 (A.5)

where c2 = (ρmχ)−1, ρm being the thermal mean value
of the mass density and χ the adiabatic compressibility of
the fluid.

One can now solve these equations by Laplace trans-
forms, in the three different cases: (1) i = ⊥, j = ⊥′;
(2) i = ⊥, j = ‖; (3) i = j = ‖. Noting with an upper
index 0, the value of a fluctuation at time t = 0, one easily
obtains:

- Case (1):

Q⊥⊥′(ω) =
1

ω
R(ω)Q0

⊥⊥′ (A.6)

where:

R(ω) =
ωΓ̂ (ω)

ω2
0 + ωΓ̂ (ω)

(A.7)

Γ̂ (ω) = Γ ′(ω)− ω. (A.8)

Multiplying both sides of equation (A.6) by Q0
⊥⊥′ and

taking the thermal mean value of both sides yields:

Q2
⊥⊥′(ω) ≡ LT 〈Q⊥⊥′(t)Q⊥⊥′(0)〉 =

1

ω
R(ω)〈|Q0

⊥⊥′ |
2〉

(A.9)

the corresponding spectral profile being the imaginary

part of Q2
⊥⊥′(ω).

- Case (2):

The calculation is a little more intricate because of the
coupling between equations (A.4) and (A.5). Once the
Laplace transform is performed, one obtains the two equa-
tions:

ρm(ωv⊥(ω)− v0
⊥)− q2ηs(ω)v⊥(ω)

− qµ(ω)(ωQ⊥‖(ω)−Q0
⊥‖) = 0 (A.10a)

Γ̂ (ω)(ωQ⊥‖(ω)−Q0
⊥‖) + ω2

0Q⊥‖(ω)

+ qΛµ(ω)v⊥(ω) = 0 (A.10b)

which yields:

Q⊥‖(ω)

(
ω2

0 + ωΓ̂ (ω) +
q2Λ′[ωµ(ω)]2

ω2ρm − q2ωηs(ω)

)
=
Q0
⊥‖

ω

(
ωΓ̂ (ω) +

q2Λ′[ωµ(ω)]2

ω2ρm − q2ωηs(ω)

)
+Kv0

⊥ (A.11)

where K is a function of q and ω. When one multiplies
both sides of equation (A.11) by Q0

⊥‖, and takes its ther-

mal mean value, the term proportional to 〈Q0
⊥‖v

0
⊥〉 drops

out, because the product in the thermal mean value is not
invariant through time reversal symmetry. Some algebraic
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manipulations then lead to:

Q2
⊥‖(ω) ≡ LT 〈Q⊥‖(t)Q⊥‖(0)〉

=
1

ω
(R(ω) +R1(ω))〈|Q0

⊥⊥′ |
2〉 (A.12)

with:

R1(ω) =
q2ρ−1

m G(ω)

ω2 − q2ρ−1
m [ωηs(ω)−G(ω)(1−R(ω))−1]

(A.13a)

G(ω) = Λ′ω2
0

(
µ(ω)

Γ̂ (ω)

)2

R2(ω). (A.13b)

- Case (3):
Though we shall not discuss the case of the longitudi-
nal current in this paper, we simply quote here the result
which makes use of the fact that both 〈Q0

‖ ‖J
0
‖ 〉 and 〈ρ0J0

‖ 〉
are equal to zero, due to the same time reversal symmetry
argument as above. A tedious calculation yields:

J2
‖ (ω) =

〈|J0
‖ |

2〉

ω2−q2ρ−1
m

[
c2ρm+ωηb(ω)+ 4

3
(ωηs(ω)−G(ω)(1−R(ω))−1)

] ,
(A.14)

a result formally similar to the one obtained in [15].

Appendix A.2

The light scattering mechanism which gives rise to the
low frequency spectrum we study in the present paper
may be considered from two different points of view. One
is the formal expression of the dielectric tensor associated
with a rotation of the molecules, within the framework of
the present study; the second is the physical origin of the
mechanism and its potential calculation. We shall only dis-
cuss here the first aspect which is only a problem of group
theory. The general method used in this paper consists
in working in the hydrodynamic regime, i.e. in a limit
where the liquid is considered as a continuous medium
which has the full symmetry of the complete rotational
group, O3. A symmetrical secund rank traceless tensor
transforms as the l = 2 irreducible representation of that
group, which is 2l + 1 = 5 fold degenerate. This implies
that the 5 non trivial components of such a tensor depend
only on one number; in other words, if this tensor is ex-
pressed in the axes in which it is diagonal, it reduces to
βXX = βY Y = −1/2βZZ, while βXY = βY Z = βZX = 0,
by definition. Such a property is valid for any second rank
symmetrical traceless tensor, so that, if one tensor is lin-
early related to the other (one being the origin of the
second), the two tensors can only be proportional one to
the other. This implies that the relationship between the

two tensors ¯̄β and ¯̄Q must be:

¯̄β = b ¯̄Q,

as written in equation (2.14).
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